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Abstract— Navigation through crowded intersections is a
challenge for autonomous vehicles, where uncertainty arises
from interaction with other road users, encountering new scenes
and weathers, etc. Recent end-to-end autonomous control deep
models learned from human drivers have shown promising
driving performance, whereas they are not as transparent and
safe as traditional rule-based systems. When facing situations
that they are unfamiliar with or uncertain about, the deep
models’ predictions could be unsafe and untrustworthy. With-
out the ability to identify these situations and issue warnings
beforehand, cascading errors of deep models may result in
catastrophes. Therefore, this work combines the strengths of
both data-driven and traditional rule-based approaches to
achieve better driving quality and safety. We propose a hetero-
geneity uncertainty quantification method based on imitation
learning, where both data and model uncertainties of the
lateral and longitudinal control tasks are quantified. We also
propose a policy deployment strategy where a safety indicator is
developed upon estimated uncertainty to bridge the data-driven
performance layer and the rule-based fallback layer. We learned
from human driving demonstrations and conducted extensive
closed-loop tests. Results demonstrate the effectiveness and
importance of the proposed uncertainty quantification method
and policy deployment strategy.

I. INTRODUCTION

Inspired by the amazing advances in deep learning, re-
cent years have witnessed tremendous efforts in end-to-end
autonomous driving [1]–[3]. A bunch of vision-based au-
tonomous control methods based on deep imitation learning
have been developed [4]–[8]. These approaches learn to map
raw camera images to control signals such as acceleration
and steering angles. To realize multiple driving maneuvers,
conditional imitation learning [4] was proposed to predict
control actions conditioned on high-level commands such as
turn left, turn right, go straight, etc.

Safe and efficient navigation through crowded intersec-
tions has been one of the main challenges of autonomous
urban driving [9]–[11]. In such tasks, the autonomous agent
needs to exercise robust control to interact with other road
users. The uncertainty introduced by other road users poses
a significant threat to the reliability of autonomous driving
models. Although end-to-end autonomous driving systems
have shown promising outcomes compared to traditional
modularized counterparts [12], [13], several limitations hin-
ders the future development and application of them. First,
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Fig. 1. We combine learning-based control models (performance layer) and
a rule-based control system (fallback layer). A safety indicator is developed
upon the uncertainty estimation of networks. The final control defaults back
to a rule-based system for safety when the models are unreliable.

end-to-end methods do not typically provide the same level
of transparency as in traditional modular systems, resulting in
poor reliability and trustworthiness. Second, literature works
have focused mainly on improving task performance, while
quantification of uncertainties in either data (e.g., due to sen-
sor noise) or model (e.g., due to distributional mismatch) has
less been studied. Third, when a deep model is confronted
with unfamiliar scenarios, such as traveling in a new town
it hasn’t experienced in training, its performance usually
drops dramatically. Countermeasures need to be taken by
identifying the situations when the model is uncertain.

Uncertainty quantification is of significant importance for
safety-critical applications like autonomous driving [14]. At
intersection navigation, when encountering a pedestrian, a
human driver can choose to yield or pass through longitudi-
nal control, and meanwhile steer through lateral control. Such
behavior can be modeled implicitly through imitation learn-
ing of human driving data. However, lateral and longitudinal
controls have uncertainties of different nature (refer to Fig.
6). For example, scene features such as lane markings and
obstacles are of different importance for lateral and longitu-
dinal control tasks. In addition, the lateral and longitudinal
controls are manipulated by human drivers’ feet and hands,
respectively, and show different control vibration tolerances
in expert demonstrations. There are literature works on DIL-
based autonomous control policies that addressed intersec-
tion scenarios [4], [5], [15] and uncertainty-aware imitation
learning methods have also been studied [16]–[20]. However,
none of these works address the heterogeneity uncertainties
in lateral and longitudinal controls, which cannot be ignored
when learning from human driving data.

Demonstrated in Fig. 1, this work proposes an uncertainty-
aware deep imitation learning method based on multi-task
conditional imitation learning (MTCIL) [8]. We further com-



bine the deep model with a rule-based control system to
enhance its safety and reliability under uncertain challenging
interactive scenarios. Our contributions are as follows:

• A heterogeneity uncertainty quantification method is
proposed for autonomous navigation at crowded inter-
sections. Uncertainties at both the data and model levels
are quantified in the lateral and longitudinal control
tasks, and are learned from human driving data within
the MTCIL framework.

• An online deployment strategy is proposed to enhance
driving performance in challenging situations. By utiliz-
ing the quantified uncertainty as a safety indicator for
control switch, the data-driven approach is combined
with a traditional rule-based control system to achieve
both high driving quality and safety.

• Extensive experiments are conducted demonstrating the
superior performance of the proposed method. CARLA
simulator is used for closed-loop test. Models are
learned from human driving data collected in the simu-
lator and extensively evaluated under various conditions.

II. RELATED WORKS

A. Deep Imitation Learning for Autonomous Driving Control

Direct perception methods [15], [21] leverage neural net-
works to extract intermediate representations, based on which
control actions are generated. The choices of representations
can be distances to the preceding vehicle and centerline [15].
One limitation is that system expertise is needed to design
these representations, which is case-by-case and sub-optimal.

End-to-end methods [4], [5], [8], [22] directly train neural
networks that map raw observations to control actions. One
pioneering work is NVIDIA’s PilotNet [22] but it only
adapts to simple lane following. To learn different driving
skills, conditional imitation learning (CIL) [4] utilizes multi-
branch network structures where the output is conditioned on
high-level behavior commands. Subsequent methods reduce
the neural networks’ perception burden through privileged
supervision, such as road maps [6] and BEV images [7].

However, these methods focus on improving task perfor-
mance and lack the ability to quantify uncertainty associated
with either data or models. Directly deploying these models
could be dangerous especially in safety-critical self-driving.

B. Deep Learning Uncertainty Estimation

Uncertainty estimation in deep learning is significant [23],
[24]. There are usually two kinds of deep learning uncer-
tainty, i.e., aleatoric/data uncertainty and epistemic/model
uncertainty [25]. The former one captures the noise inherent
in data, which cannot be reduced even with unlimited data.
The latter one accounts for uncertainty in model, which
arises from data sparsity and distributional mismatch. Model
uncertainty can be reduced given more training data.

Data uncertainty is usually modeled by placing a dis-
tribution over the model output and can be learned via
heteroscedastic regression [26], [27]. Model uncertainty can
be estimated via Bayesian [28] and non-Bayesian methods.
Estimating the posterior of network weights is non-trivial

and approximations exist [29]–[31]. Dropout variational in-
ference is a practical approach that can handle large complex
models [30], [32]. There are also non-Bayesian methods such
as ensembles [33], [34]. These methods are common in that
they apply probabilistic reasoning on the network weights.

C. Uncertainty-aware Autonomous Driving

In autonomous driving, uncertainty can arise from stochas-
tic varying traffic environment, multi-modal driving behavior,
partial observation and sensor noise, etc. Some methods
[16]–[20] have been proposed to consider the deep learning
uncertainty in autonomous driving. [16] proposed to deploy a
visual-based driving policy from a stochastic and uncertainty-
aware perspective. [18] quantified uncertainty with statistical
guarantees based on Bayesian Neural Networks (BNN).
However, their model deals with images of few pixels
and simple stationary environments. [20] utilized epistemic
uncertainty to detect and recover from distribution shifts.

However, none of these works address the heterogeneity
uncertainties in lateral and longitudinal controls, which can-
not be ignored when learning from human driving data.

III. METHODOLOGY

A. Problem Definition

To navigate through crowded urban intersections, an
autonomous agent needs to interact with pedestrians on
crosswalks and vehicles in its vicinity. Given real-time
observations like front-view images, it adjusts the lateral
and longitudinal control actions to complete a sequence of
driving commands successfully, safely and efficiently.

This work learns from a demonstration dataset D consisted
of driving trajectories {Tn}Nn=1. One trajectory Tn is a tem-
poral series of tuples {(otn, ctn, atn)}Tt=1, where otn, ctn and atn
represent observation, command and action, respectively. The
observation at each time step includes the front-view RGB
image Itn and ego speed vtn. The actions include the lateral
steering angle alat and longitudinal acceleration alon. The
commands are categorized into lateral and longitudinal ones
accordingly, i.e., clat ∈ {follow lane, turn left, turn right,
go straight} and clon ∈ {decelerate, maintain, accelerate}.
The goal is to learn a deep neural network control policy πθ

parameterized by θ, which maps observations and commands
into actions aNN = πθ(o, c). A typical L2 imitation loss as
follows is optimized to obtain the optimal parameters θ∗.

θ∗ = argmin
θ

∑
i

L(πθ(oi, ci), ai) (1)

To tackle the different natures of uncertainties in lateral
and longitudinal controls, the multi-task conditional imitation
learning (MTCIL) framework [8] is exploited, as shown in
Fig. 2(a). To quantify the uncertainty dependent on input
data, i.e. data uncertainty, the deep networks output a mean
µ and a variance σ2 of Gaussian distribution for both lateral
and longitudinal control actions. These variance values σ2

reflecting data uncertainty are also used to weight tasks
of lateral and longitudinal controls in multi-task learning.
On the other hand, deep ensemble is used to quantify the
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Fig. 2. (a) Offline learning of the uncertainty-aware model (cf. Section III-B). The density network outputs action means and variances that estimate
data uncertainty. The model is trained via maximum likelihood within the MTCIL framework. (b) Online deployment under uncertainty (cf. Section
III-D). When the ensemble yields uncertain (potentially unsafe) predictions at test time, the control is switched to a rule-based control system.

uncertainties from both input data and deep control models
as shown in Fig. 2(b). In online deployment, the total
uncertainty is used to identify situations when the deep policy
model is uncertain, and subsequently the output of a rule-
based control system is exploited to improve safety.

B. Learning Data Uncertainty with Heteroscedastic Loss

Assume the demonstration dataset D = {(oi, ci, ai)}|D|
i=1

is sampled from a true joint distribution Ptr. The generation
of data samples can be formulated as follows [23]:

a = πθ(o, c) + ϵ, (o, c) ∼ Ptr(o, c) (2)

where πθ is a driving policy mapping input (o, c) to action
a and ϵ is the additive noise. A Gaussian noise is usually
assumed for regression tasks, i.e., a ∼ N (πθ(o, c), σ

2).
Since the noise ϵ may vary across different observations
and commands, this work adopts the heteroscedastic noise
[32], where a learnable function σ(o, c) varying with input
is used for variance estimation. To this end, we transform
the original deterministic neural network into a probabilistic
density network that can yield uncertainty estimates.

Our learning framework is shown in Fig. 2(a). The input
front-view image I and ego speed value v are encoded
using a ResNet34 [35] and a multi-layer perceptron (MLP)
respectively. Features are concatenated and passed to two
branches to perform lateral and longitudinal control tasks.
Each task is accomplished by a conditional control module
that contains multiple MLPs, one of which is selected each
time according to the lateral and longitudinal command
c = (clat, clon). To learn input-dependent data uncertainty,
we use the probabilistic density network, where each control
MLP outputs a mean action µ and a variance σ2:

πθ(o, c) = [µlat, σ
2
lat, µlon, σ

2
lon] (3)

Given the dataset D = {(oi, ci, ai)}|D|
i=1, where ai =

(ai,lat, ai,lon) is a tuple containing the steer for lateral con-
trol and acceleration for longitudinal control. Our imitation
learning objective is to maximize the total likelihood:

θ∗ = argmin
θ

L(θ)

L(θ) =
∑
i

− log p(ai|πθ(oi, ci))

=
∑
i

1

2
σ−2
lat,i∥alat,i − µlat,i∥2 + log σlat,i

+
1

2
σ−2
lon,i∥alon,i − µlon,i∥2 + log σlon,i (4)

Intuitively, the loss applies weight to different samples,
relaxing the MSE error of those with higher data uncertainty,
while the log terms serve as regularization.

C. Deep Ensembles based Total Uncertainty Estimation

Deep ensembles [34], [36] is used to estimate the total
uncertainty from both data and model. Given an ensem-
ble of density networks with parameters θ1, θ2, ..., θM , it
is expected that the ensembles predict consistent results
for the well-learned (confident) scenes, while inconsistent
predictions confronting rare, unexperienced or confusing
(uncertain) situations. Model uncertainty can be assessed
via measures of the disagreement between models (e.g.,
variance). This work exploits the law of total variance [37]:

V[a|s] = Vp(θ|D)

[
Ep(a|πθ(s))[a]

]︸ ︷︷ ︸
model uncertainty

+ Ep(θ|D)

[
Vp(a|πθ(s))[a]

]︸ ︷︷ ︸
expected data uncertainty

where s denotes (o, c) and the total variance of V[a|s] is
decomposed into the variance of expectations (model uncer-
tainty) and the expectation of variances (data uncertainty).

This work construct ensembles through the non-Bayesian
Bootstrap approach [38]. Compared with Bayesian methods,
the advantage is that the burden of selecting suitable model
prior and nontrivial posterior variational approximation [39],
[40] is removed. The entire dataset D is randomly divided
into subsets, i.e., D = D1

⋃
D2

⋃
...

⋃
DM , on which

models are trained independently using the loss (Eqn. 4)
to obtain the parameters θ1, θ2, ..., θM . Given a test input
(o, c), each ensemble πθm predicts mean actions for lateral



and longitudinal controls and their variances, i.e., µm =
(µlat, µlon)m and σ2

m = (σ2
lat, σ

2
lon)m. The final ensemble

action aNN and total uncertainty u are estimated as follows:

aNN =
1

M

∑
m

µm (5)

u =
1

M

∑
m

µ2
m − (

1

M

∑
m

µm)2︸ ︷︷ ︸
model uncertainty

+
1

M

∑
m

σ2
m︸ ︷︷ ︸

data uncertainty

(6)

D. Policy Deployment under Uncertainty

During online policy deployment, the quantification of
total uncertainty u is used to identify the situations when
the model is uncertain, and let a traditional modular rule-
based control system to take over. In order to avoid frequent
switching between control models, a safety indicator ρ is
developed by accumulating the discounted total uncertainties
within a time window (t − T, t], and the rule-based control
action is exploited when ρ ≥ η.

ρt =

T−1∑
k=0

γkut−k (7)
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Fig. 3. Driving routes divided into sections of different semantic categories.

However, during driving the level of uncertainty may vary
with region and driving behavior, and there are different
variations in uncertainty for lateral and longitudinal controls.
It is reflected in uncertainty maps in Fig. 6, where uncer-
tainties in lateral and longitudinal controls during 50 closed-
loop test episodes are recorded, and average uncertainties
are estimated for each grid of the maps. It can be seen
that the lateral uncertainty before entering the intersection
is low, while that within the intersection is high. To this end,
the driving routes are divided into sections of five semantic
categories as shown in Fig. 3, namely approach intersec-
tion, leave intersection, turn left, turn right or go straight
through intersection. Using the train dataset, the lateral and
longitudinal uncertainty distributions on the road sections for
each semantic category are calculated and shown in Fig. 4(a-
b), where the horizontal and vertical axes denote uncertainty
(log scale) and cumulative probability, respectively. Given a
certain cumulative probability λ as shown in Fig. 4(c), the
corresponding uncertainty value of each semantic category
k is assigned to ηlon,k or ηlat,k, and sets of thresholds
ηlat = {ηlat,k}5k=1 and ηlon = {ηlon,k}5k=1 are obtained
for switch of lateral and longitudinal controls between the
rule-based and the deep learning models on different road
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sections. On the other hand, λ can be varied to develop
different driving behaviors. In this work, λ is defined at
three different levels (c.f. Fig. 4(d)): Large, Middle, Small,
yielding the control of aggressive, moderate and conservative
styles. The deployment algorithm is outlined below.

Algorithm 1 Policy Deployment under Uncertainty
Input: models {πθm}Mm=1, rule-based policy πR, thresholds

ηlat, ηlon
Output: Control actions {at}, where at = (alat,t, alon,t)

1: while ¬ Episode end do
2: Get ot, ct
3: for m = 1 to M do
4: πθm(ot, ct) = (µlat, σ

2
lat, µlon, σ

2
lon)m

5: end for
6: Compute ulat,t, ulon,t on Eqn. 6
7: Compute alat,t, alon,t on Eqn. 5
8: Compute ρlat,t, ρlon,t on Eqn. 7
9: Get semantic category k of the current road section

10: if ρlat,t ≥ ηlat,k then
11: Switch to rule policy, alat,t = πR

lat(ot, ct)
12: end if
13: if ρlon,t ≥ ηlon,k then
14: Switch to rule policy, alon,t = πR

lon(ot, ct)
15: end if
16: Control vehicle with alat,t, alon,t
17: t = t + 1
18: end while

IV. EXPERIMENTAL RESULTS

A. Benchmark and Dataset

Benchmark: This work uses the IntersectNav Benchmark
[8], which supports closed-loop test on the realistic 3D
simulator CARLA. Six intersections and 41 navigation routes
navigating are available. To complete three kinds of tasks,
i.e., turn left/right and go straight, the agent needs to interact
with pedestrians and other vehicles. In each episode, 20-30



pedestrians and 6-15 environmental vehicles are generated
in the intersection and controlled by CARLA built-in AI
controllers. Challenging situations such as unprotected turn
could happen. There are four types of episode outcomes:
collision, lane invasion, timeout and success (complete the
task without former three failures). Evaluations from the
aspects of task completion and driving performance are
conducted using the metrics defined in [8]. For the former,
success/collision/timeout/lane invasion rates are estimated.
For the latter, intense actions (the average number of over-
controlled actions, the larger the value the more uncomfort-
able) and total steps (the average total steps per episode, the
smaller the value the more efficient) are estimated.

Dataset: The demonstration dataset from [8] is used,
which contains about 1.3K trajectories and 40 hours driving
data from human drivers. Data from four intersections are
used for training and validation while data from the other
two are reserved for test. The training dataset includes six
weather conditions such as ClearNoon and CloudySunset.
During evaluation, eight new weather conditions such as
HardRainNoon and ClearNight are also tested.

B. Compared Methods and Implementation Details

Methods of different categories are chosen for comparison.
Rule-based baseline:
• CARLA autopilot [41]: a modular rule-based control

system, including collision check, motion planner and
a PID controller. Given other agents’ locations, potential
collision hazards are identified to determine the vehicle
target speed upon rules. Then the vehicle’s movement
is determined by PID to reach the target waypoints.

Learning-based baselines:
• CILRS [5]: the original method unaware of uncertainty.
• MTCIL [8]: aware of homoscedastic (input indepen-

dent) data uncertainty only.
• MTCIL En, a deep ensemble [34] variant of MTCIL [8]
• CILRS Drop, a variant of our method that uses test-time

dropout [30], [32] instead of deep ensemble [34].
The proposed:
• UACIL-D: our uncertainty-aware deep imitation learn-

ing model.
• UACIL-U: our uncertainty-aware deployment method

that combines learning-based models with a rule-based
system (CARLA autopilot) as fallback.

We train all models using Adam optimizer with an initial
learning rate 2e-4, which is divided by 10 if validation loss
stops decreasing for more than 5 training epochs. We set the
test-time dropout rate of CILRS Drop to 0.5. For ensemble
models, we set the number of models M = 5 following [34].
In Eqn. 7, we set T = 10 and γ = 0.95. Three cumulative
probabilities λ = 0.95, 0.92, 0.9 are chosen to determine the
uncertainty thresholds.

C. Task Performance

The task completion results of evaluated methods are re-
ported in Tab. I. The driving performance results of methods

TABLE I
CLOSED-LOOP TEST TASK COMPLETION OF EVALUATED METHODS

Method Succ. Rt. Time. Rt. Lane. Rt. Colli. Rt.
Train scene % , ↑ %, ↓ %, ↓ %, ↓
Rule-based 95.0 ± 1.4 4.7 ± 0.8 0.0 ± 0.0 0.3 ± 0.2

CILRS 65.3 ± 1.8 9.4 ± 0.6 7.2 ± 1.6 18.1 ± 1.5
MTCIL 84.7 ± 0.8 3.7 ± 1.5 5.9 ± 0.4 5.7 ± 1.6

CILRS Drop 85.2 ± 3.1 2.4 ± 1.7 3.0 ± 1.4 9.4 ± 2.6
MTCIL EN 94.9 ± 2.2 3.8 ± 2.0 0.0 ± 0.0 1.1 ± 0.6
UACIL-D 96.3 ± 1.6 2.6 ± 1.1 0.4 ± 0.3 0.7 ± 0.6
UACIL-U 97.9 ± 1.7 1.7 ± 0.4 0.0 ± 0.0 0.4 ± 0.2
New scene
Rule-based 94.6 ± 2.6 5.0 ± 2.7 0.0 ± 0.0 0.4 ± 0.3

CILRS 52.8 ± 3.4 9.8 ± 4.2 9.7 ± 2.6 27.7 ± 3.2
MTCIL 80.3 ± 1.6 4.1 ± 1.6 8.5 ± 1.2 7.1 ± 0.6

CILRS Drop 86.7 ± 4.2 3.3 ± 1.5 3.2 ± 1.9 6.8 ± 2.3
MTCIL EN 92.2 ± 2.0 3.8 ± 1.8 1.5 ± 1.0 2.5 ± 1.0
UACIL-D 94.0 ± 2.2 4.3 ± 2.0 0.0 ± 0.0 1.7 ± 1.0
UACIL-U 96.1 ± 2.6 3.1 ± 2.1 0.0 ± 0.0 0.8 ± 0.6

1 Mean and standard deviation over five random seeds.
2 Succ. Rt.: Success Rate, Time. Rt.: Timeout Rate, Lane. Rt.: Lane

Invasion Rate, Colli. Rt.: Collision Rate.
3 Our proposed methods are marked in grey. UACIL-D/U: Direct de-

ployment/Uncertainty-aware deployment.

TABLE II
CLOSED-LOOP TEST DRIVING PERFORMANCE OF EVALUATED METHODS

Method Intense Actions Total Steps
Train scene #, ↓ #, ↓
Rule-based 241.962 ± 3.092 554.835 ± 11.229
MTCIL EN 56.810 ± 2.392 514.088 ± 15.268
UACIL-D 55.717 ± 6.033 510.494 ± 12.113
UACIL-U 64.501 ± 4.503 519.549 ± 13.971
New scene
Rule-based 260.508 ± 13.571 597.779 ± 17.806
MTCIL EN 51.495 ± 0.834 558.013 ± 34.536
UACIL-D 43.347 ± 1.763 536.465 ± 13.825
UACIL-U 51.771 ± 1.690 546.126 ± 6.260

1 Mean and standard deviation over five random seeds.
2 Intense actions: Average times of the agents’ steer
|alat| > 0.4 or acceleration |alon| > 0.9; Total steps:
Average time steps of closed-loop test episodes.

whose success rates are higher than 90% are further reported
in Tab. II. In brief, the learning-based methods show superior
driving performance than the rule-based method, where our
UACIL-D is the best in terms of intense actions (comfort)
and total steps (efficiency). The rule-based method performs
well in task completion. By combining the learning-based
with the rule-based, our UACIL-U has the best overall
performance. The results are discussed in more detail below.

Rule-based baseline: The rule-based baseline has the low-
est collision rates (best safety) since its parameters are tuned
to be conservative and guarantee safety first (i.e., always
leave large safe distances and yield to pedestrians). However,
its driving performance is worse than learning-based methods
(c.f. Tab. II), i.e., more intense actions and less efficiency.

Learning-based baselines: Among learning-based meth-
ods, ensemble methods MTCIL En and UACIL-D outper-
form other methods by far in success rates. One expla-
nation is that ensemble models benefit from training on
different subsets of data and gain diverse experiences. This
avoids overfitting to most common samples. Besides, the
ensemble models’ aggregated action predictions are more
robust to disturbances in observations, resulting in better



control stability. By treating each input sample differently
in the learning process, UACIL-D achieves better driving
performance compared to MTCIL En.

The proposed: UACIL-U outperforms UACIL-D by a
reduced collision rate and an increased success rate. It also
outperforms the rule-based system in driving performance
(fewer intense actions and higher efficiency), which demon-
strates the benefit of combining learned models with the rule-
based system through uncertainty-aware deployment.

D. Uncertainty Quantification Results

Fig. 5 plots the lateral data and model uncertainty (cf. Eqn.
6) distribution on different datasets. In our case, the model
uncertainty on train set can be diminished to a low level via
enough training while data uncertainty can’t. The reason lies
in that data uncertainty is the inherent property of human
control actions. Another finding is that model uncertainty
significantly increases at the test set which is collected from
intersections unexperienced during training.

10
−5

10
−3

10
−1

uncertainty (log scale)

0.00

0.05

0.10

0.15

0.20

pr
ob

ab
ilit

y

trainset

10
−5

10
−3

10
−1

uncertainty (log scale)

testset

Lat. data
Lat. model

Fig. 5. Estimated data and model uncertainty on train and test datasets.

We further analyze the uncertainty quantification results
of closed-loop test under various conditions (i.e., scenes,
weather). The average uncertainty of 400 closed-loop test
episodes in is listed in Tab. III. The new scene and new
weather is the most challenging situation and it has the
highest values of most types of uncertainties. Besides, lateral
and longitudinal total uncertainties have different sensitivity
to changes in scenes and weathers.

TABLE III
AVERAGE UNCERTAINTY IN TEST UNDER DIFFERENT CONDITIONS

Scene Weather Lat. Uc. ×10−3 Lon. Uc. ×10−3

Total Model Data Total Model Data
train train 2.219 0.748 1.471 3.268 1.891 1.377
new train 4.622 1.187 3.435 4.237 2.536 1.701
train new 3.263 1.047 2.216 3.979 2.182 1.797
new new 4.797 1.080 3.717 4.320 2.219 2.101

1 Bold numbers are the highest and underlined ones are the second highest.

E. Task-dependent Uncertainty Analysis

Our results find that uncertainties of the lateral and
longitudinal control tasks show different properties (i.e.,
heterogeneity) and vary across spatial areas. The uncertainty
distribution of one of the left turn tasks is shown in Fig.
6. The results are from 50 closed-loop test episodes. In the
left turn task, the lateral total uncertainty is smaller than that
of longitudinal control. This is consistent with the property
of human driving data, i.e., the steering angle during left
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Fig. 6. Total uncertainty distribution visualization (top-down view).

turn is relatively stable while there are more fluctuations
in acceleration. In Fig. 6(a), the lateral total uncertainty is
relatively lower at straight lanes and higher in the intersection
area, indicating more uncertainty during the course of turning
compared to lane keeping. In Fig. 6(b), the longitudinal total
uncertainty is larger in the intersection, especially at the
waiting area in front of the crosswalks. This indicates higher
uncertainty when the agent interacts with pedestrians, e.g.,
unsure about whether to yield to pedestrians or not.

A case study is presented in Fig. 7. The first and second
rows show frames from different simulation episodes with
low and high total uncertainty, respectively. We find low un-
certainty usually corresponds with scenarios when the model
is pretty sure while high uncertainty tends to correspond with
uncertain rare scenarios. For example, the high uncertainty
frames of three cases correspond to unprotected left turn,
opposite vehicle running red light and right turn merge,
respectively. All these situations are rare in the training
data, showing that our method has the potential to identify
situations different than training. Besides, the lateral and lon-
gitudinal total uncertainties have different quantities and vary
across navigation tasks, demonstrating their heterogeneity.

F. Uncertainty-aware Policy Deployment Results

This section analyzes the performance gap between di-
rect and uncertainty-aware policy deployment under more
challenging conditions. Three sets of uncertainty thresholds
{ηlat, ηlon} are chosen for comparison in Algorithm. 1
that correspond to Small, Middle and Large values. The
higher the uncertainty threshold, the more aggressive the
final deployment policy (i.e., more trust in the network’s
predictions). Vision-based end-to-end driving control models

TABLE IV
TAKE OVER RATIOS OF DIFFERENT THRESHOLDS AND CONDITIONS

Method Threshold Condition
TS&TW NS&TW TS&NW NS&NW

UACIL-U(S) Small 0.1751 0.3296 0.2189 0.3753
UACIL-U(M) Medium 0.0806 0.1311 0.0878 0.1468
UACIL-U(L) Large 0.0409 0.0648 0.0426 0.0695
1 TS/NS: Train/New Scene, TW/NW: Train/New Weather.

are sensitive to changes in images (e.g., different illumi-
nation conditions). Demonstrated in Fig. 8, the direct de-
ployment method UACIL-D’s performance endures dramatic
degradation (a decrease in success rate up to 10%) when
encountering new scenes or weathers. Although uncertainty-
aware deployment methods UACIL-U have similar success



Low Total 
Uncertainty

High Total
Uncertainty

𝑎𝑎𝑙𝑙𝑙𝑙𝑙𝑙|𝑢𝑢𝑙𝑙𝑙𝑙𝑙𝑙:−0.067|1.787
𝑎𝑎𝑙𝑙𝑙𝑙𝑙𝑙 𝑢𝑢𝑙𝑙𝑙𝑙𝑙𝑙:−0.661 13.41

(a) Case 1 (b) Case 2 (c) Case 3

𝑎𝑎𝑙𝑙𝑙𝑙𝑙𝑙|𝑢𝑢𝑙𝑙𝑙𝑙𝑙𝑙:−0.025|0.316
𝑎𝑎𝑙𝑙𝑙𝑙𝑙𝑙|𝑢𝑢𝑙𝑙𝑙𝑙𝑙𝑙:−0.697|2.729

𝑎𝑎𝑙𝑙𝑙𝑙𝑙𝑙|𝑢𝑢𝑙𝑙𝑙𝑙𝑙𝑙:−0.002|6.783
𝑎𝑎𝑙𝑙𝑙𝑙𝑙𝑙 𝑢𝑢𝑙𝑙𝑙𝑙𝑙𝑙: 0.869 3.490

𝑎𝑎𝑙𝑙𝑙𝑙𝑙𝑙 𝑢𝑢𝑙𝑙𝑙𝑙𝑙𝑙:−0.002 18.18
𝑎𝑎𝑙𝑙𝑙𝑙𝑙𝑙 𝑢𝑢𝑙𝑙𝑙𝑙𝑙𝑙:−0.749 11.48

𝑎𝑎𝑙𝑙𝑙𝑙𝑙𝑙 𝑢𝑢𝑙𝑙𝑙𝑙𝑙𝑙: 0.304 4.666
𝑎𝑎𝑙𝑙𝑙𝑙𝑙𝑙 𝑢𝑢𝑙𝑙𝑙𝑙𝑙𝑙: 0.811 4.010

𝑎𝑎𝑙𝑙𝑙𝑙𝑙𝑙 𝑢𝑢𝑙𝑙𝑙𝑙𝑙𝑙: 0.336 14.25
𝑎𝑎𝑙𝑙𝑙𝑙𝑙𝑙 𝑢𝑢𝑙𝑙𝑙𝑙𝑙𝑙:−0.797 14.26
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Fig. 7. Case study of simulation frames. The first row: low total uncertainty frames that correspond with confident scenarios, which the model is
well-trained to handle. The second row: high total uncertainty frames that tend to correspond with uncertain and rare scenarios, which the model has
hardly experienced during training. The arrow points to the prediction while the sector represents the uncertainty. Case 1 is from a train scene while Case
2&3 are from new scenes. The order of magnitude of uncertainty values is 10−3. Note that the bird-view image is only for reference.
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Fig. 8. Success rates of different deployment settings. UACIL-D/U:
Direct/Uncertainty-aware deployment; S,M,L correspond to three sets of
uncertainty thresholds: Small, Middle, Large.
rates as UACIL-D under train scene and train weather,
they have better performance under new conditions. This
demonstrates the necessity of considering the uncertainty
during deployment and switching to the fallback rule-based
system for reliability when the models are uncertain.

Nevertheless, let the rule-based method take over too many
times could be inefficient. The take over ratios (proportion
of frames when rule-based policy takes over control in an
episode) are averaged over multiple simulation episodes and
reported in Tab. IV. Although UACIL-U(S) achieves the
highest success rate in Fig. 8, it has the largest take over
ratio up to 37.5%. In our case, we find that UACIL-U(M)
has the acceptable performance and take over ratios (less
than 15% under new scenes and new weathers).

V. CONCLUSION, INSIGHTS AND FUTURE
WORKS

This work proposes an uncertainty-aware deep imitation
learning and deployment method for autonomous navigation
through crowded intersections. A heterogeneity uncertainty
quantification method is developed, and an uncertainty-aware
deployment strategy is proposed to switch control to a
fallback system when deep models are uncertain. Extensive
experiments are conducted, and the proposed method is

demonstrated of superior performance on both task comple-
tion and driving performance. Besides, we have the following
insights and future works.

Learning-based method v.s. rule-based control system.
Traditional rule-based control systems generate driving ac-
tions using hand-crafted rules and fine-tuned parameters. In
dynamic intersection scenarios, their parameters are tuned
to ensure safety first, leading to conservative driving be-
havior while sacrificing efficiency. In contrast, data-driven
methods can represent the highly non-linear procedure of
a human driver’s decision-making. The deep model learned
from human demonstrations have the potential to mimic
human drivers’ behavior, whereas it is not as transparent
and safe as hand-crafted rules due to its black-box feature.
Using uncertainty quantification as proposed in this work,
an autonomous driving system can leverage deep models to
achieve comfort and efficiency in most cases, while leaving
safety to a rule-based system in corner cases.

Is the quantified uncertainty reliable and trustable? In
most uncertainty quantification techniques, since the un-
certainty is estimated based on the output of models, the
reliability of the uncertainty is an open question, especially
when facing new test data that has distributional shift from
training set. In future work, uncertainty calibration methods
will be leveraged to mitigate the problem.

Is modeling the deep uncertainty enough? The modeled
uncertainty in this work comes from deep learning, i.e., from
data and model, respectively. However, apart from the ego-
perspective uncertainty, uncertainty arising from surrounding
traffic systems should be modeled. For example, the pedes-
trians’ and environment vehicles’ behaviors are inherently
stochastic, dynamic and uncertain. Planning under both kinds
of uncertainty in a unified framework is left for future work.
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